Irradiance separation model parameter estimation from historical cloud cover statistical properties

dc.article.number114785
dc.catalogadorjlo
dc.contributor.authorCastillejo Cuberos, Armando
dc.contributor.authorCardemil Iglesias, José Miguel
dc.contributor.authorBoland, J.
dc.contributor.authorEscobar Moragas, Rodrigo Alfonso
dc.date.accessioned2024-08-20T16:16:56Z
dc.date.available2024-08-20T16:16:56Z
dc.date.issued2024
dc.description.abstractIrradiance separation models allow the decomposition of Global Horizontal Irradiance into Diffuse Horizontal and Direct Normal Irradiances. These models need fitting to the irradiance characteristics of the location of interest using locally measured ground data. For locations that only measure Global Horizontal Irradiance, current state of the art establishes the use of parameters obtained for another location that measures the three components, with similar climate characteristics. Nevertheless, this results in a lack of localized character for estimates and requires fitting model parameters for all possible climates, which can be infeasible given data availability. This work presents a novel approach based on the hypothesis that the separation model's parameters are a function of the statistical properties of satellite-derived cloud cover estimates. The proposed methodology was evaluated in 23 sites covering all main Ko<spacing diaeresis>ppen-Geiger climatic types and different cloud coverage properties using the Boland-Ridley-Lauret diffuse fraction model. The model performs similarly as locally adjusting the model, with Root Mean Square Errors of 0.087-0.15 diffuse fraction units versus 0.077-0.127 for locally optimized parameters, and offers adequate performance across climates and cloud characteristics. These results encourage future research by generalizing parameter estimation for other diffuse fraction models. The main applications for this research are the estimation of irradiance components where no local data is available for model fitting and the enhancement or complementarity of satellite estimates of surface irradiance. Furthermore, it allows the estimation of missing irradiance components due to equipment failure in locations with insufficient data for a representative, locally adapted model.
dc.format.extent16 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.rser.2024.114785
dc.identifier.eissn1879-0690
dc.identifier.eissn1879-0690
dc.identifier.issn1364-0321
dc.identifier.urihttps://doi.org/10.1016/j.rser.2024.114785
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/87542
dc.identifier.wosidWOS:001278677000001
dc.information.autorucEscuela de Ingeniería; Castillejo Cuberos, Armando; S/I; 1050239
dc.information.autorucEscuela de Ingeniería; Cardemil Iglesias, José Miguel; 0000-0002-9022-8150; 119912
dc.information.autorucEscuela de Ingeniería; Escobar Moragas, Rodrigo Alfonso; 0000-0001-9097-7461; 158663
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final16
dc.pagina.inicio1
dc.revistaRenewable and sustainable energy reviews
dc.rightsacceso restringido
dc.subjectDiffuse fraction
dc.subjectSeparation model
dc.subjectSolar irradiance
dc.subjectClimate
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.subject.ods13 Climate action
dc.subject.odspa13 Acción por el clima
dc.titleIrradiance separation model parameter estimation from historical cloud cover statistical properties
dc.typeartículo
dc.volumen203
sipa.codpersvinculados1050239
sipa.codpersvinculados119912
sipa.codpersvinculados158663
sipa.trazabilidadWOS;2024-08-17
Files