Non-thin rank jumps for double elliptic K3 surfaces
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
For an elliptic surface pi:X -> P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :X\rightarrow \mathbb {P}<^>1$$\end{document} defined over a number field K, a theorem of Silverman shows that for all but finitely many fibres above K-rational points, the resulting elliptic curve over K has Mordell-Weil rank at least as large as the rank of the group of sections of pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. When X is a K3 surface with two distinct elliptic fibrations, we show that the set of K-rational points of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}<^>1$$\end{document} for which this rank inequality is strict, is not a thin set, under certain hypothesis on the fibrations. Our results provide one of the first cases of this phenomenon beyond that of rational elliptic surfaces.
Description
Keywords
Primary 14J27, 14J28, Secondary 11G05, 14D10