A CONJECTURE OF WATKINS FOR QUADRATIC TWISTS

dc.contributor.authorEsparza-Lozano, Jose A.
dc.contributor.authorPasten, Hector
dc.date.accessioned2025-01-20T23:50:41Z
dc.date.available2025-01-20T23:50:41Z
dc.date.issued2021
dc.description.abstractWatkins conjectured that for an elliptic curve E over Q of Mordell-Weil rank r, the modular degree of E is divisible by 2(r). If E has non-trivial rational 2-torsion, we prove the conjecture for all the quadratic twists of E by squarefree integers with sufficiently many prime factors.
dc.fuente.origenWOS
dc.identifier.doi10.1090/proc/15376
dc.identifier.eissn1088-6826
dc.identifier.issn0002-9939
dc.identifier.urihttps://doi.org/10.1090/proc/15376
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94733
dc.identifier.wosidWOS:000643563200011
dc.issue.numero6
dc.language.isoen
dc.pagina.final2385
dc.pagina.inicio2381
dc.revistaProceedings of the american mathematical society
dc.rightsacceso restringido
dc.subjectElliptic curve
dc.subjectrank
dc.subjectmodularity
dc.titleA CONJECTURE OF WATKINS FOR QUADRATIC TWISTS
dc.typeartículo
dc.volumen149
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files