Molecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Structure of the HD 163296 Disk

dc.contributor.authorCalahan, Jenny K.
dc.contributor.authorBergin, Edwin A.
dc.contributor.authorZhang, Ke
dc.contributor.authorSchwarz, Kamber R.
dc.contributor.authorOberg, Karin, I
dc.contributor.authorGuzman, Viviana V.
dc.contributor.authorWalsh, Catherine
dc.contributor.authorAikawa, Yuri
dc.contributor.authorAlarcon, Felipe
dc.contributor.authorAndrews, Sean M.
dc.contributor.authorBae, Jaehan
dc.contributor.authorBergner, Jennifer B.
dc.contributor.authorBooth, Alice S.
dc.contributor.authorBosman, Arthur D.
dc.contributor.authorCataldi, Gianni
dc.contributor.authorCzekala, Ian
dc.contributor.authorHuang, Jane
dc.contributor.authorIlee, John D.
dc.contributor.authorLaw, Charles J.
dc.contributor.authorLe Gal, Romane
dc.contributor.authorLong, Feng
dc.contributor.authorLoomis, Ryan A.
dc.contributor.authorMenard, Francois
dc.contributor.authorNomura, Hideko
dc.contributor.authorQi, Chunhua
dc.contributor.authorTeague, Richard
dc.contributor.authorvan't Hoff, Merel L. R.
dc.contributor.authorWilner, David J.
dc.contributor.authorYamato, Yoshihide
dc.date.accessioned2025-01-20T22:05:52Z
dc.date.available2025-01-20T22:05:52Z
dc.date.issued2021
dc.description.abstractUnderstanding the temperature structure of protoplanetary disks is key to interpreting observations, predicting the physical and chemical evolution of the disk, and modeling planet formation processes. In this study, we constrain the two-dimensional thermal structure of the disk around the Herbig Ae star HD 163296. Using the thermochemical code RAC2D, we derive a thermal structure that reproduces spatially resolved Atacama Large Millimeter/submillimeter Array observations (similar to 0.'' 12 (13 au)-0.'' 25 (26 au)) of (CO)-C-12 J = 2 - 1, (CO)-C-13 J = 1 - 0, 2 - 1, (CO)-O-18 J = 1 - 0, 2 - 1, and (CO)-O-17 J = 1 - 0, the HD J = 1 - 0 flux upper limit, the spectral energy distribution (SED), and continuum morphology. The final model incorporates both a radial depletion of CO motivated by a timescale shorter than typical CO gas-phase chemistry (0.01 Myr) and an enhanced temperature near the surface layer of the the inner disk (z/r >= 0.21). This model agrees with the majority of the empirically derived temperatures and observed emitting surfaces derived from the J = 2 - 1 CO observations. We find an upper limit for the disk mass of 0.35 M (circle dot), using the upper limit of the HD J = 1 - 0 and J = 2 - 1 flux. With our final thermal structure, we explore the impact that gaps have on the temperature structure constrained by observations of the resolved gaps. Adding a large gap in the gas and small dust additionally increases gas temperature in the gap by only 5%-10%. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
dc.fuente.origenWOS
dc.identifier.doi10.3847/1538-4365/ac143f
dc.identifier.eissn1538-4365
dc.identifier.issn0067-0049
dc.identifier.urihttps://doi.org/10.3847/1538-4365/ac143f
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94173
dc.identifier.wosidWOS:000714235700001
dc.issue.numero1
dc.language.isoen
dc.revistaAstrophysical journal supplement series
dc.rightsacceso restringido
dc.titleMolecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Structure of the HD 163296 Disk
dc.typeartículo
dc.volumen257
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files