Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights
dc.contributor.author | Chuaqui, M | |
dc.contributor.author | Cortazar, C | |
dc.contributor.author | Elgueta, M | |
dc.contributor.author | Garcia-Melian, J | |
dc.date.accessioned | 2025-01-21T01:07:24Z | |
dc.date.available | 2025-01-21T01:07:24Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We consider the elliptic problems Deltau = a(x)u(m), m > 1, and Deltau = a(x)e(u) in a smooth bounded domain Omega, with the boundary condition u = +infinity on partial derivativeOmega. The weight function a(x) is assumed to be Holder continuous, growing like a negative power of d(x) = dist(x, partial derivativeOmega) near partial derivativeOmega. We show existence and nonexistence results, uniqueness and asymptotic estimates near the boundary for both the solutions and their normal derivatives. | |
dc.fuente.origen | WOS | |
dc.identifier.eissn | 1553-5258 | |
dc.identifier.issn | 1534-0392 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/96323 | |
dc.identifier.wosid | WOS:000226123400006 | |
dc.issue.numero | 4 | |
dc.language.iso | en | |
dc.pagina.final | 662 | |
dc.pagina.inicio | 653 | |
dc.revista | Communications on pure and applied analysis | |
dc.rights | acceso restringido | |
dc.subject | elliptic problems | |
dc.subject | boundary blow up | |
dc.title | Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights | |
dc.type | artículo | |
dc.volumen | 3 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |