Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights

dc.contributor.authorChuaqui, M
dc.contributor.authorCortazar, C
dc.contributor.authorElgueta, M
dc.contributor.authorGarcia-Melian, J
dc.date.accessioned2025-01-21T01:07:24Z
dc.date.available2025-01-21T01:07:24Z
dc.date.issued2004
dc.description.abstractWe consider the elliptic problems Deltau = a(x)u(m), m > 1, and Deltau = a(x)e(u) in a smooth bounded domain Omega, with the boundary condition u = +infinity on partial derivativeOmega. The weight function a(x) is assumed to be Holder continuous, growing like a negative power of d(x) = dist(x, partial derivativeOmega) near partial derivativeOmega. We show existence and nonexistence results, uniqueness and asymptotic estimates near the boundary for both the solutions and their normal derivatives.
dc.fuente.origenWOS
dc.identifier.eissn1553-5258
dc.identifier.issn1534-0392
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96323
dc.identifier.wosidWOS:000226123400006
dc.issue.numero4
dc.language.isoen
dc.pagina.final662
dc.pagina.inicio653
dc.revistaCommunications on pure and applied analysis
dc.rightsacceso restringido
dc.subjectelliptic problems
dc.subjectboundary blow up
dc.titleUniqueness and boundary behavior of large solutions to elliptic problems with singular weights
dc.typeartículo
dc.volumen3
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files