MULTIPLICITY RESULTS FOR GROUND STATE SOLUTIONS OF A SEMILINEAR EQUATION VIA ABRUPT CHANGES IN MAGNITUDE OF THE NONLINEARITY

dc.contributor.authorCortazar, Carmen
dc.contributor.authorGarcia-Huidobro, Marta
dc.contributor.authorHerreros, Pilar
dc.date.accessioned2025-01-20T21:01:13Z
dc.date.available2025-01-20T21:01:13Z
dc.date.issued2022
dc.description.abstractGiven k is an element of N, we define a class of continuous piecewise functions f having abrupt but controlled magnitude changes so that the problem Delta u + f (u) = 0, x is an element of RN, N > 2, has at least k radially symmetric positive solutions.
dc.fuente.origenWOS
dc.identifier.doi10.3934/dcds.2022176
dc.identifier.eissn1553-5231
dc.identifier.issn1078-0947
dc.identifier.urihttps://doi.org/10.3934/dcds.2022176
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92833
dc.identifier.wosidWOS:000892651600001
dc.language.isoen
dc.revistaDiscrete and continuous dynamical systems
dc.rightsacceso restringido
dc.subjectMultiplicity
dc.subjectground states
dc.subjectinitial value problem
dc.subjectsemilinear
dc.subjectelliptic
dc.titleMULTIPLICITY RESULTS FOR GROUND STATE SOLUTIONS OF A SEMILINEAR EQUATION VIA ABRUPT CHANGES IN MAGNITUDE OF THE NONLINEARITY
dc.typeartículo
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files