Cold Deuterium Fractionation in the Nearest Planet-forming Disk

dc.contributor.authorMunoz-Romero, Carlos E.
dc.contributor.authorOberg, Karin I.
dc.contributor.authorLaw, Charles J.
dc.contributor.authorTeague, Richard
dc.contributor.authorAikawa, Yuri
dc.contributor.authorBergner, Jennifer B.
dc.contributor.authorWilner, David J.
dc.contributor.authorHuang, Jane
dc.contributor.authorGuzman, Viviana V.
dc.contributor.authorCleeves, L. Ilsedore
dc.date.accessioned2025-01-20T20:17:39Z
dc.date.available2025-01-20T20:17:39Z
dc.date.issued2023
dc.description.abstractDeuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO+ and DCN J = 2-1 at an angular resolution of 0.'' 5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO+ and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 x 10(12) and 9.8 x 10(11) cm(-2) for DCO+ and DCN, with typical kinetic temperatures for both molecules of 20-30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO+/DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO+ and DCN in other disks, as well as HCN and HCO+, will be necessary to place the trends exhibited by TW Hya in context, and fully constrain the main deuteration mechanisms in disks.
dc.fuente.origenWOS
dc.identifier.doi10.3847/1538-4357/aca765
dc.identifier.eissn1538-4357
dc.identifier.issn0004-637X
dc.identifier.urihttps://doi.org/10.3847/1538-4357/aca765
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92412
dc.identifier.wosidWOS:000928404900001
dc.issue.numero1
dc.language.isoen
dc.revistaAstrophysical journal
dc.rightsacceso restringido
dc.titleCold Deuterium Fractionation in the Nearest Planet-forming Disk
dc.typeartículo
dc.volumen943
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files