Ellipses, near ellipses, and harmonic Mobius transformations
dc.contributor.author | Chuaqui, M | |
dc.contributor.author | Duren, P | |
dc.contributor.author | Osgood, B | |
dc.date.accessioned | 2025-01-21T01:07:19Z | |
dc.date.available | 2025-01-21T01:07:19Z | |
dc.date.issued | 2005 | |
dc.description.abstract | It is shown that an analytic function taking circles to ellipses must be a Mobius transformation. It then follows that a harmonic mapping taking circles to ellipses is a harmonic Mobius transformation. | |
dc.fuente.origen | WOS | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/96310 | |
dc.identifier.wosid | WOS:000230031500031 | |
dc.issue.numero | 9 | |
dc.language.iso | en | |
dc.pagina.final | 2710 | |
dc.pagina.inicio | 2705 | |
dc.revista | Proceedings of the american mathematical society | |
dc.rights | acceso restringido | |
dc.subject | harmonic mapping | |
dc.subject | Schwarzian derivative | |
dc.subject | harmonic Mobius transformation | |
dc.subject | circles | |
dc.subject | ellipses | |
dc.title | Ellipses, near ellipses, and harmonic Mobius transformations | |
dc.type | artículo | |
dc.volumen | 133 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |