A water filling primal dual algorithm for approximating non linear covering problems (2020)
dc.catalogador | yvc | |
dc.contributor.author | Fielbaum, Andrés | |
dc.contributor.author | Morales Bravo Camilo Ignacio | |
dc.contributor.author | Verschae Tannenbaum Jose Claudio | |
dc.date.accessioned | 2025-02-24T19:40:48Z | |
dc.date.available | 2025-02-24T19:40:48Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Obtaining strong linear relaxations of capacitated covering problems constitute a significant technical challenge even for simple settings. For one of the most basic cases, the Knapsack-Cover (Min-Knapsack) problem, the relaxation based on knapsack-cover inequalities has an integrality gap of 2. These inequalities are exploited in more general problems, many of which admit primal-dual approximation algorithms. Inspired by problems from power and transport systems, we introduce a general setting in which items can be taken fractionally to cover a given demand. The cost incurred by an item is given by an arbitrary non-decreasing function of the chosen fraction. We generalize the knapsack-cover inequalities to this setting an use them to obtain a (2+ε)-approximate primal-dual algorithm. Our procedure has a natural interpretation as a bucket-filling algorithm which effectively overcomes the difficulties implied by having different slopes in the cost functions. More precisely, when some superior segment of an item presents a low slope, it helps to increase the priority of inferior segments. We also present a rounding algorithm with an approximation guarantee of 2.We generalize our algorithm to the Unsplittable Flow-Cover problem on a line, also for the setting of fractional items with non-linear costs. For this problem we obtain a (4+ε)-approximation algorithm in polynomial time, almost matching the 4-approximation algorithm known for the classical setting. | |
dc.description.funder | ANID Fondecyt Projecto No. 1181527 | |
dc.fechaingreso.objetodigital | 2025-02-24 | |
dc.format.extent | 15 páginas | |
dc.fuente.origen | Converis | |
dc.identifier.doi | 10.4230/LIPIcs.ICALP.2020.46 | |
dc.identifier.eisbn | 978-3-95977-138-2 | |
dc.identifier.scopusid | Id: 2-s2.0-85089346460 | |
dc.identifier.uri | https://doi.org/10.4230/LIPIcs.ICALP.2020.46 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102221 | |
dc.information.autoruc | Escuela de Ingeniería; Morales Bravo, Camilo Ignacio; S/I; 204029 | |
dc.information.autoruc | Escuela de Ingeniería; Verschae Tannenbaum, José Claudio; 0000-0002-2049-6467; 243006 | |
dc.language.iso | en | |
dc.nota.acceso | contenido completo | |
dc.publisher | Schloss Dagstuhl, Leibniz-Zentrum für Informatik, GmbH | |
dc.relation.ispartof | International Colloquium on Automata, Languages, and Programming (ICALP) : 47th : Saarbrücken, Germany (Virtual Conference) | |
dc.relation.ispartofseries | Leibniz International Proceedings in Informatics, LIPIcs : 168 | |
dc.rights | acceso abierto | |
dc.rights.license | CC BY Attribution 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/legalcode | |
dc.subject | Knapsack-Cover Inequalities | |
dc.subject | Non-Linear Knapsack-Cover | |
dc.subject | Primal-Dual | |
dc.subject | Water-Filling Algorithm | |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.title | A water filling primal dual algorithm for approximating non linear covering problems (2020) | |
dc.type | comunicación de congreso | |
sipa.codpersvinculados | 204029 | |
sipa.codpersvinculados | 243006 | |
sipa.trazabilidad | Converis;20-07-2021 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LIPIcs.ICALP.2020.46.pdf
- Size:
- 490.42 KB
- Format:
- Adobe Portable Document Format
- Description: