Rare-earth-based metal-organic frameworks with improved visible-light-harvesting properties: a quantum chemistry study

Abstract
This report proves that improving the visible-light-harvesting properties in rare-earth-based metal-organic frameworks (RE-MOFs) (labelled as RE-UiO-66, UiO = University of Oslo MOFs), with the aim of performing as potential visible-light-driven photocatalysts, is achievable. Thus, the design of MOFs with specific applications, especially those involving sunlight and material interactions, represents a growing field, which has been addressed in the herein work using quantum mechanical tools. We achieved to relate the light absorption properties with the structure in systems Y-UiO-66, Sc-UiO-66 and La-UiO-66, by evaluating the inclusion of well-known electron donor substituents in the structure of the 1,4-benzenedicarboxylate (BDC) linker (i.e. BDC-R, R: -CH3, -OH, -SH and -NH2). The electronic structure and optical properties of Y-UiO-66 were rigorously investigated using computational techniques combining molecular and periodic density functional theory (DFT) calculations. As a remarkable result, it was shown that including the groups -SH or -NH2 in the BDC linker, induced a shift in the absorption bands to the visible region (>= 400 nm). Hence, a group of new RE-MOFs materials with optimal structural and photocatalytic properties is proposed. This could encourage researchers to prepare these new materials to be tested in photocatalysis, such as cleaving the C-H bond, water splitting or photocatalytic degradation of organic contaminants.
[GRAPHICS]
.
Description
Keywords
Citation