Global invertibility of Sobolev maps

dc.contributor.authorHenao, Duvan
dc.contributor.authorMora-Corral, Carlos
dc.contributor.authorOliva, Marcos
dc.date.accessioned2025-01-20T23:51:23Z
dc.date.available2025-01-20T23:51:23Z
dc.date.issued2021
dc.description.abstractWe define a class of Sobolev W1-p(Omega, R-n) functions, with p > n -1, such that its trace on de is also Sobolev, and do not present cavitation in the interior or on the boundary. We show that if a function in this class has positive Jacobian and coincides on the boundary with an injective map, then the function is itself injective. We then prove the existence of minimizers within this class for the type of functionals that appear in nonlinear elasticity.
dc.fuente.origenWOS
dc.identifier.doi10.1515/acv-2018-0053
dc.identifier.eissn1864-8266
dc.identifier.issn1864-8258
dc.identifier.urihttps://doi.org/10.1515/acv-2018-0053
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94805
dc.identifier.wosidWOS:000635630500004
dc.issue.numero2
dc.language.isoen
dc.pagina.final230
dc.pagina.inicio207
dc.revistaAdvances in calculus of variations
dc.rightsacceso restringido
dc.subjectGlobal invertibility
dc.subjectSobolev maps
dc.subjectnonlinear elasticity
dc.titleGlobal invertibility of Sobolev maps
dc.typeartículo
dc.volumen14
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files