Understanding Symptom Profiles of Depression with the PHQ-9 in a Community Sample Using Network Analysis

dc.catalogadorgjm
dc.contributor.authorNúñez Barraza, Catalina Andrea
dc.contributor.authorDelgadillo, Jaime
dc.contributor.authorBarkham, Michael
dc.contributor.authorBehn Berliner, Alex Joseph
dc.date.accessioned2024-05-30T16:23:17Z
dc.date.available2024-05-30T16:23:17Z
dc.date.issued2024
dc.description.abstractBackground: Depression is one of the most prevalent mental health conditions in the world. However, the heterogeneity of depression has presented obstacles for research concerning disease mechanisms, treatment indication, and personalization. So far, depression heterogeneity research has mainly used latent variable modeling, assuming a latent cause, that overlooks the possibility that symptoms might interact and reinforce each other. The current study used network analysis to analyze and compare profiles of depressive symptoms present in community samples, considering the relationship between symptoms. Methods: Cross-sectional measures of depression using the Patient Health Questionnaire-9 (PHQ-9) were collected from community samples using data from participants scoring above a clinical threshold of ≥10 points (N=2,023; 73.9% female; mean age 49.87, SD= 17.40). Data analysis followed three steps. First, a profiling algorithm was implemented to identify all possible symptom profiles by dichotomizing each PHQ-9 item. Second, the most prevalent symptom profiles were identified in the sample. Third, network analysis for the most prevalent symptom profiles was carried out to identify the centrality and covariance of symptoms. Results: Of 382 theoretically possible depression profiles, only 167 were present in the sample. Furthermore, 55.6% of the symptom profiles present in the sample were represented by only eight profiles. Network analysis showed that the network and symptoms relationship varied across the profiles. Conclusions: Findings indicate that the vast number of theoretical possible ways to meet the criteria for major depressive disorder is significantly reduced in empirical samples, and that the most common profiles of symptoms have different networks and connectivity patterns. Scientific and clinical consequences of these findings are discussed in the context of the limitations of this study.
dc.fechaingreso.objetodigital2024-08-29
dc.format.extent36 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1192/j.eurpsy.2024.1756
dc.identifier.urihttps://doi.org/10.1192/j.eurpsy.2024.1756
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/86044
dc.information.autorucEscuela de Psicología; Núñez Barraza, Catalina Andrea; 0000-0002-5879-7476; 193513
dc.information.autorucEscuela de Psicología; Behn Berliner, Alex Joseph; 0000-0003-2070-7866; 243036
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaEuropean Psychiatry
dc.rightsacceso abierto
dc.rights.licenseCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNetwork analysis
dc.subjectDepression heterogeneity
dc.subjectDepression profiles
dc.subject.ddc610
dc.subject.deweyPsicologíaes_ES
dc.subject.ods03 Good health and well-being
dc.subject.odspa03 Salud y bienestar
dc.titleUnderstanding Symptom Profiles of Depression with the PHQ-9 in a Community Sample Using Network Analysis
dc.typeartículo
sipa.codpersvinculados193513
sipa.codpersvinculados243036
sipa.trazabilidadORCID;2024-05-27
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Understanding Symptom Profiles of Depression with the PHQ-9 in a Community Sample Using Network Analysis.pdf
Size:
966.32 KB
Format:
Adobe Portable Document Format
Description: