A criterion for nondensity of integral points

dc.contributor.authorGarcia-Fritz, Natalia
dc.contributor.authorPasten, Hector
dc.date.accessioned2025-01-20T17:07:05Z
dc.date.available2025-01-20T17:07:05Z
dc.date.issued2024
dc.description.abstractWe give a general criterion for Zariski degeneration of integral points in the complement of a divisor D$D$ with n$n$ components in a variety of dimension n$n$ defined over Q$\mathbb {Q}$ or over a quadratic imaginary field. The key condition is that the intersection of the components of D$D$ is not well approximated by rational points, and we discuss several cases where this assumption is satisfied. We also prove a greatest common divisor (GCD) bound for algebraic points in varieties, which can be of independent interest.
dc.fuente.origenWOS
dc.identifier.doi10.1112/blms.13035
dc.identifier.eissn1469-2120
dc.identifier.issn0024-6093
dc.identifier.urihttps://doi.org/10.1112/blms.13035
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90839
dc.identifier.wosidWOS:001193809900001
dc.issue.numero6
dc.language.isoen
dc.pagina.final1950
dc.pagina.inicio1939
dc.revistaBulletin of the london mathematical society
dc.rightsacceso restringido
dc.titleA criterion for nondensity of integral points
dc.typeartículo
dc.volumen56
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files