Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage

dc.contributor.authorDelsoto, G. S.
dc.contributor.authorBattisti, F. G.
dc.contributor.authorda Silva, A. K.
dc.date.accessioned2025-01-20T20:16:34Z
dc.date.available2025-01-20T20:16:34Z
dc.date.issued2023
dc.description.abstractRecompression Brayton cycles using supercritical CO2 as the working fluid appear as a prominent alternative for thermo-solar power applications. Also, solar energy's natural variability and intermittence make it difficult for solar plants to operate consistently and predictably. Thus, two of the most explored mitigating alternatives are thermal energy storage and auxiliary heating systems. Hence, this paper used actual meteorological data and transient numerical simulations to investigate the power output dynamics of a 10 MW plant. The modeling of an active control system of the working fluid mass inventory allowed the plant to operate in a stable manner while accounting for the significant variations in the fluid's thermophysical properties. Also, the study investigated the effect of the sizes of the thermal energy storage system and solar collectors field on the dynamics of the system. Finally, statistical analyses with actual meteorological data from Florianopolis/Brazil for nine days between 2017 and 2018 supported determining the optimal thermal energy storage system size. Hence, depending on the daily conditions, the results showed the operating settings that minimize the use of auxiliary heating with reductions of fuel consumption larger than 10%.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.renene.2023.01.088
dc.identifier.eissn1879-0682
dc.identifier.issn0960-1481
dc.identifier.urihttps://doi.org/10.1016/j.renene.2023.01.088
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92339
dc.identifier.wosidWOS:000948131600001
dc.language.isoen
dc.pagina.final356
dc.pagina.inicio336
dc.revistaRenewable energy
dc.rightsacceso restringido
dc.subjectSolar energy
dc.subjectBrayton cycle
dc.subjectSupercritical CO 2
dc.subjectThermal energy storage
dc.subjectTransient analysis
dc.titleDynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage
dc.typeartículo
dc.volumen206
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files