Counting Function of Magnetic Resonances for Exterior Problems

dc.contributor.authorBruneau, Vincent
dc.contributor.authorSambou, Diomba
dc.date.accessioned2025-01-23T21:28:12Z
dc.date.available2025-01-23T21:28:12Z
dc.date.issued2016
dc.description.abstractWe study the asymptotic distribution of the resonances near the Landau levels , , of the Dirichlet (resp. Neumann, resp. Robin) realization in the exterior of a compact domain of of the 3D Schrodinger operator with constant magnetic field of scalar intensity . We investigate the corresponding resonance counting function and obtain the main asymptotic term. In particular, we prove the accumulation of resonances at the Landau levels and the existence of resonance-free sectors. In some cases, it provides the discreteness of the set of embedded eigenvalues near the Landau levels.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00023-016-0497-2
dc.identifier.eissn1424-0661
dc.identifier.issn1424-0637
dc.identifier.urihttps://doi.org/10.1007/s00023-016-0497-2
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/101402
dc.identifier.wosidWOS:000387489500005
dc.issue.numero12
dc.language.isoen
dc.pagina.final3471
dc.pagina.inicio3443
dc.revistaAnnales henri poincare
dc.rightsacceso restringido
dc.titleCounting Function of Magnetic Resonances for Exterior Problems
dc.typeartículo
dc.volumen17
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files