Counting Function of Magnetic Resonances for Exterior Problems
dc.contributor.author | Bruneau, Vincent | |
dc.contributor.author | Sambou, Diomba | |
dc.date.accessioned | 2025-01-23T21:28:12Z | |
dc.date.available | 2025-01-23T21:28:12Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We study the asymptotic distribution of the resonances near the Landau levels , , of the Dirichlet (resp. Neumann, resp. Robin) realization in the exterior of a compact domain of of the 3D Schrodinger operator with constant magnetic field of scalar intensity . We investigate the corresponding resonance counting function and obtain the main asymptotic term. In particular, we prove the accumulation of resonances at the Landau levels and the existence of resonance-free sectors. In some cases, it provides the discreteness of the set of embedded eigenvalues near the Landau levels. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00023-016-0497-2 | |
dc.identifier.eissn | 1424-0661 | |
dc.identifier.issn | 1424-0637 | |
dc.identifier.uri | https://doi.org/10.1007/s00023-016-0497-2 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/101402 | |
dc.identifier.wosid | WOS:000387489500005 | |
dc.issue.numero | 12 | |
dc.language.iso | en | |
dc.pagina.final | 3471 | |
dc.pagina.inicio | 3443 | |
dc.revista | Annales henri poincare | |
dc.rights | acceso restringido | |
dc.title | Counting Function of Magnetic Resonances for Exterior Problems | |
dc.type | artículo | |
dc.volumen | 17 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |