On an elliptic problem with boundary blow-up and a singular weight
dc.contributor.author | Chuaqui, M | |
dc.contributor.author | Cortázar, C | |
dc.contributor.author | Elgueta, M | |
dc.contributor.author | Flores, C | |
dc.contributor.author | Letelier, R | |
dc.contributor.author | García-Melián, J | |
dc.date.accessioned | 2025-01-21T01:09:54Z | |
dc.date.available | 2025-01-21T01:09:54Z | |
dc.date.issued | 2003 | |
dc.description.abstract | In this work we consider the non-autonomous problem Deltau = a(x)u(m) in the unit ball B subset of R-N, with the boundary condition u\(partial derivativeB) = +infinity, and m > 0. Assuming that a is a continuous radial function with a(x) similar to C-0 dist(x, partial derivativeB)(-gamma) as dist(x, partial derivativeB) --> 0, for some C-0 > 0, gamma > 0, we completely determine the issues of existence, multiplicity and behaviour near the boundary for radial positive solutions, in terms of the values of m and gamma. The case 0 < m less than or equal to 1, as well as estimates for solutions to the linear problem m = 1, are a significant part of our results. | |
dc.fuente.origen | WOS | |
dc.identifier.eissn | 1473-7124 | |
dc.identifier.issn | 0308-2105 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/96632 | |
dc.identifier.wosid | WOS:000187976700006 | |
dc.language.iso | en | |
dc.pagina.final | 1297 | |
dc.pagina.inicio | 1283 | |
dc.revista | Proceedings of the royal society of edinburgh section a-mathematics | |
dc.rights | acceso restringido | |
dc.title | On an elliptic problem with boundary blow-up and a singular weight | |
dc.type | artículo | |
dc.volumen | 133 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |