On an elliptic problem with boundary blow-up and a singular weight

dc.contributor.authorChuaqui, M
dc.contributor.authorCortázar, C
dc.contributor.authorElgueta, M
dc.contributor.authorFlores, C
dc.contributor.authorLetelier, R
dc.contributor.authorGarcía-Melián, J
dc.date.accessioned2025-01-21T01:09:54Z
dc.date.available2025-01-21T01:09:54Z
dc.date.issued2003
dc.description.abstractIn this work we consider the non-autonomous problem Deltau = a(x)u(m) in the unit ball B subset of R-N, with the boundary condition u\(partial derivativeB) = +infinity, and m > 0. Assuming that a is a continuous radial function with a(x) similar to C-0 dist(x, partial derivativeB)(-gamma) as dist(x, partial derivativeB) --> 0, for some C-0 > 0, gamma > 0, we completely determine the issues of existence, multiplicity and behaviour near the boundary for radial positive solutions, in terms of the values of m and gamma. The case 0 < m less than or equal to 1, as well as estimates for solutions to the linear problem m = 1, are a significant part of our results.
dc.fuente.origenWOS
dc.identifier.eissn1473-7124
dc.identifier.issn0308-2105
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96632
dc.identifier.wosidWOS:000187976700006
dc.language.isoen
dc.pagina.final1297
dc.pagina.inicio1283
dc.revistaProceedings of the royal society of edinburgh section a-mathematics
dc.rightsacceso restringido
dc.titleOn an elliptic problem with boundary blow-up and a singular weight
dc.typeartículo
dc.volumen133
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files