Threshold Singularities of the Spectral Shift Function for Geometric Perturbations of Magnetic Hamiltonians
dc.contributor.author | Bruneau, Vincent | |
dc.contributor.author | Raikov, Georgi | |
dc.date.accessioned | 2025-01-23T19:52:13Z | |
dc.date.available | 2025-01-23T19:52:13Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We consider the Schrodinger operator H0with constant magnetic field B of scalar intensity b>0self-adjoint in L2(R3) and its perturbations H+ (resp., H-obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain omega in subset of R3 We introduce the Krein spectral shift functions xi(Ex37e;H +/-,H0) for the operator pairs (H +/-,H0)and study their singularities at the Landau levels ?q:=b(2q+1)which play the role of thresholds in the spectrum of H0 We show that xi(Ex37e;H+,H0)remains bounded as E up arrow?qbeing fixed, and obtain three asymptotic terms of xi(Ex37e;H-,H0) as E up arrow?q$$E \uparrow \Lambda _q$$\end{document}, and of xi(Ex37e;H +/-,H0)as E down arrow?qThe first two divergent terms are independent of the perturbation, while the third one involves the logarithmic capacity of the projection of omega inonto the plane perpendicular to B. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00023-020-00904-6 | |
dc.identifier.eissn | 1424-0661 | |
dc.identifier.issn | 1424-0637 | |
dc.identifier.uri | https://doi.org/10.1007/s00023-020-00904-6 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/100623 | |
dc.identifier.wosid | WOS:000527785000002 | |
dc.issue.numero | 5 | |
dc.language.iso | en | |
dc.pagina.final | 1488 | |
dc.pagina.inicio | 1451 | |
dc.revista | Annales henri poincare | |
dc.rights | acceso restringido | |
dc.subject | 35P20 | |
dc.subject | 81Q10 | |
dc.title | Threshold Singularities of the Spectral Shift Function for Geometric Perturbations of Magnetic Hamiltonians | |
dc.type | artículo | |
dc.volumen | 21 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |