Threshold Singularities of the Spectral Shift Function for Geometric Perturbations of Magnetic Hamiltonians

dc.contributor.authorBruneau, Vincent
dc.contributor.authorRaikov, Georgi
dc.date.accessioned2025-01-23T19:52:13Z
dc.date.available2025-01-23T19:52:13Z
dc.date.issued2020
dc.description.abstractWe consider the Schrodinger operator H0with constant magnetic field B of scalar intensity b>0self-adjoint in L2(R3) and its perturbations H+ (resp., H-obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain omega in subset of R3 We introduce the Krein spectral shift functions xi(Ex37e;H +/-,H0) for the operator pairs (H +/-,H0)and study their singularities at the Landau levels ?q:=b(2q+1)which play the role of thresholds in the spectrum of H0 We show that xi(Ex37e;H+,H0)remains bounded as E up arrow?qbeing fixed, and obtain three asymptotic terms of xi(Ex37e;H-,H0) as E up arrow?q$$E \uparrow \Lambda _q$$\end{document}, and of xi(Ex37e;H +/-,H0)as E down arrow?qThe first two divergent terms are independent of the perturbation, while the third one involves the logarithmic capacity of the projection of omega inonto the plane perpendicular to B.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00023-020-00904-6
dc.identifier.eissn1424-0661
dc.identifier.issn1424-0637
dc.identifier.urihttps://doi.org/10.1007/s00023-020-00904-6
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100623
dc.identifier.wosidWOS:000527785000002
dc.issue.numero5
dc.language.isoen
dc.pagina.final1488
dc.pagina.inicio1451
dc.revistaAnnales henri poincare
dc.rightsacceso restringido
dc.subject35P20
dc.subject81Q10
dc.titleThreshold Singularities of the Spectral Shift Function for Geometric Perturbations of Magnetic Hamiltonians
dc.typeartículo
dc.volumen21
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files