Lopsidedness as a tracer of early galactic assembly history
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Large-scale asymmetries (i.e. lopsidedness) are a common feature in the stellar density distribution of nearby disc galaxies both in low- and high-density environments. In this work, we characterize the present-day lopsidedness in a sample of 1435 disc-like galaxies selected from the TNG50 simulation. We find that the percentage of lopsided galaxies (10 percent-30 percent) is in good agreement with observations if we use similar radial ranges to the observations. However, the percentage (58 percent) significantly increases if we extend our measurement to larger radii. We find a mild or lack of correlation between lopsidedness amplitude and environment at z = 0 and a strong correlation between lopsidedness and galaxy morphology regardless of the environment. Present-day galaxies with more extended discs, flatter inner galactic regions, and lower central stellar mass density (i.e. late-type disc galaxies) are typically more lopsided than galaxies with smaller discs, rounder inner galactic regions, and higher central stellar mass density (i.e. early-type disc galaxies). Interestingly, we find that lopsided galaxies have, on average, a very distinct star formation history within the last 10 Gyr, with respect to their symmetric counterparts. Symmetric galaxies have typically assembled at early times (similar to 8-6 Gyr ago) with relatively short and intense bursts of central star formation, while lopsided galaxies have assembled on longer time-scales and with milder initial bursts of star formation, continuing building up their mass until z = 0. Overall, these results indicate that lopsidedness in present-day disc galaxies is connected to the specific evolutionary histories of the galaxies that shaped their distinct internal properties.
Description
Keywords
galaxies: evolution, galaxies: formation, galaxies: interactions, galaxies: star formation, galaxies: structure