Changes in macroaggregate stability as a result of wetting/drying cycles of soils with different organic matter and clay contents

dc.contributor.authorMelej, Maria Jesus
dc.contributor.authorAcevedo, Sara E.
dc.contributor.authorContreras, Cristina P.
dc.contributor.authorGiraldo, Carolina, V
dc.contributor.authorMaurer, Tessa
dc.contributor.authorCalderon, Francisco J.
dc.contributor.authorBonilla, Carlos A.
dc.date.accessioned2025-01-20T16:13:17Z
dc.date.available2025-01-20T16:13:17Z
dc.date.issued2024
dc.description.abstractThe wetting-drying (WD) cycles, caused by natural or anthropogenic processes such as rainfall or irrigation, can affect many soil properties. Among these properties, soil aggregate stability has been introduced as a convenient soil health indicator because of its relation to the soil's primary particles (sand, silt, and clay) and organic matter content (OM). However, previous studies have shown erratic effects depending on soil type and WD cycle setup when measuring aggregate stability. Therefore, this study aimed to characterize the soil primary particles composition and organic matter (OM) content of macroaggregates and measure the effects of WD cycles on aggregate stability. A series of soils with distinctive properties, such as OM and clay contents from five different USDA textural classes (loam, sandy loam, silty clay loam, silty loam, and clay loam) were used. Particle size distribution, OM, and mass fraction were measured in three aggregate size classes (2-1 mm, 1-0.5 mm, and 0.5-0.25 mm), and isolated aggregates were exposed to 3, 6, and 12 wetting and drying cycles. The main results indicate that soils with a high OM content have macroaggregates with finer particles, and the OM in soils is linearly related to the macroaggregate OM content. For 2-1 mm aggregates, a statistically significant reduction (p < 0.05) of water-stable aggregates compared to the control sample (0 cycles) was observed for every cycle, with reduction values between 4.8-7.3 %. An increase was observed only between 6-12 cycles (1.84 %). Additionally, statistically significant reductions were observed after the first three cycles in 1-0.5 mm aggregates and the first six in 0.5-0.25 mm aggregates. Finally, the macroaggregates were more resistant to the WD cycles when their clay and OM contents increased or the soil pH decreased. This study provides high-resolution results of macroaggregate particle size distribution and OM. It relates them to the effects of WD cycles in water-stable aggregates and soils with different land uses.
dc.description.funderNational Agency for Research and Development, Chile, Grant ANID/FONDECYT/Regular
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.geoderma.2024.116965
dc.identifier.eissn1872-6259
dc.identifier.issn0016-7061
dc.identifier.urihttps://doi.org/10.1016/j.geoderma.2024.116965
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90378
dc.identifier.wosidWOS:001267960300001
dc.language.isoen
dc.revistaGeoderma
dc.rightsacceso restringido
dc.subjectOrganic matter
dc.subjectPrimary particles
dc.subjectSoil aggregate stability
dc.subjectSoil macroaggregates
dc.subjectWetting-drying cycles
dc.subject.ods14 Life Below Water
dc.subject.ods15 Life on Land
dc.subject.ods13 Climate Action
dc.subject.ods02 Zero Hunger
dc.subject.odspa14 Vida submarina
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.subject.odspa13 Acción por el clima
dc.subject.odspa02 Hambre cero
dc.titleChanges in macroaggregate stability as a result of wetting/drying cycles of soils with different organic matter and clay contents
dc.typeartículo
dc.volumen448
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files