Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

dc.contributor.authorArdiles, Alvaro O.
dc.contributor.authorFlores-Munoz, Carolina
dc.contributor.authorToro-Ayala, Gabriela
dc.contributor.authorCardenas, Ana M.
dc.contributor.authorPalacios, Adrian G.
dc.contributor.authorMunoz, Pablo
dc.contributor.authorFuenzalida, Marco
dc.contributor.authorSaez, Juan C.
dc.contributor.authorMartinez, Agustin D.
dc.date.accessioned2025-01-23T21:42:24Z
dc.date.available2025-01-23T21:42:24Z
dc.date.issued2014
dc.description.abstractThe threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LIP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LIP whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.
dc.fuente.origenWOS
dc.identifier.doi10.3389/fncel.2014.00326
dc.identifier.issn1662-5102
dc.identifier.urihttps://doi.org/10.3389/fncel.2014.00326
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/101659
dc.identifier.wosidWOS:000344526400003
dc.language.isoen
dc.revistaFrontiers in cellular neuroscience
dc.rightsacceso restringido
dc.subjectpannexin 1
dc.subjecthippocampus
dc.subjectLTD
dc.subjectLTP
dc.subjectsynaptic plasticity
dc.subjectNMDA receptors
dc.subjectmice
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titlePannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice
dc.typeartículo
dc.volumen8
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files