An autocorrelation-based bayesian estimator for acoustic-radiation-force-induced displacements
dc.catalogador | pva | |
dc.contributor.advisor | Cuadra, Patricio de la | |
dc.contributor.advisor | Mura Mardones, Joaquín Alejandro | |
dc.contributor.author | Klemmer Chandía, Stefan Werner | |
dc.contributor.other | Pontificia Universidad Católica de Chile. Escuela de Ingeniería | |
dc.date.accessioned | 2023-03-31T13:50:54Z | |
dc.date.available | 2023-03-31T13:50:54Z | |
dc.date.issued | 2023 | |
dc.description | Tesis (Master of Science in Engineering)--Pontificia Universidad Católica de Chile, 2023 | |
dc.description.abstract | Los algoritmos de estimación de desplazamiento juegan un rol crítico en los métodos de elastografía por ultrasonido. Los estimadores bayesianos han mostrado resultados prometedores en la última década, pero su costo computacional impide su implementación en tiempo real. En esta tesis, una nueva función de verosimilitud llamada autocorrelation kernel” (ACK) es incorporada a la estimación bayesiana. Al contrario de funciones anteriores, ACK permite evaluar directamente la probabilidad de desplazamientos sub-muestra sin necesitar sobremuestreo ni interpolación. Se generaron imágenes de modo B representativas de shear wave elasticity imaging (SWEI). Primero, la fuerza de radiación acústica fue simulada. Segundo, el método de elementos finitos fue utilizado para simular desplazamientos de ondas cortantes. Por último, un programa de simulación de ultrasonido fue utilizado para producir imágenes de tejido en movimiento con textura apropiada. La función de verosimilitud propuesta fue comparada contra la clásica correlación cruzada normalizada (NCC). Ambas fueron combinadas con un prior de norma L1 para calcular la probabilidad a posteriori. Adicionalmente, un prior de norma L2 fue probado con ACK. El desplazamiento fue estimado a partir de las imágenes de modo B simuladas y los resultados fueron comparados en términos de su sesgo, variabilidad y la raíz del error cuadrático medio (RMSE). NCC tuvo un mejor desempeño que ACK. Esta mejoró la estimación inicial no bayesiana entre 24.2% y 42.5% en términos de su RMSE. ACK mejoró esta estimación en tan solo 16.6% a 36.7% con norma L1 y entre 19.3% y 33.8% con norma L2. Respecto al tiempo de cómputo, cada evaluación de ACK fue en promedio ´ 28.6% más rápida que las de NCC. No obstante, la convergencia del algoritmo de optimización no-lineal no fue acelerada. | |
dc.fechaingreso.objetodigital | 2023-03-31 | |
dc.format.extent | xi, 51 páginas | |
dc.fuente.origen | SRIA | |
dc.identifier.doi | 10.7764/tesisUC/ING/66694 | |
dc.identifier.uri | https://doi.org/10.7764/tesisUC/ING/66694 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/66694 | |
dc.information.autoruc | Escuela de ingeniería ; Cuadra, Patricio de la ; 0000-0001-5770-8649 ; 87138 | |
dc.information.autoruc | Escuela de ingeniería ; Mura Mardones, Joaquín Alejandro ; 0000-0003-1157-1602 ; 9973 | |
dc.information.autoruc | Escuela de ingeniería ; Klemmer Chandía, Stefan Werner ; S/I ; 1026016 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.rights | acceso abierto | |
dc.subject | Elastografía | es_ES |
dc.subject | Ultrasonido | es_ES |
dc.subject | Estimación | es_ES |
dc.subject | Desplazamiento | es_ES |
dc.subject | Bayesiana | es_ES |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.subject.ods | 09 Industry, innovation and infrastructure | |
dc.subject.odspa | 09 Industria, innovación e infraestructura | |
dc.title | An autocorrelation-based bayesian estimator for acoustic-radiation-force-induced displacements | es_ES |
dc.type | tesis de maestría | |
sipa.codpersvinculados | 87138 | |
sipa.codpersvinculados | 9973 | |
sipa.codpersvinculados | 1026016 |