A nonlocal diffusion problem with a sharp free boundary

dc.contributor.authorCortazar, Carmen
dc.contributor.authorQuiros, Fernando
dc.contributor.authorWolanski, Noemi
dc.date.accessioned2025-01-23T19:50:13Z
dc.date.available2025-01-23T19:50:13Z
dc.date.issued2019
dc.description.abstractWe introduce and analyze a nonlocal free boundary problem which may be of interest to describe the spreading of populations in hostile environments. The rate of growth of the volume of the region occupied by the population is proportional to the rate at which the total population decreases. We prove existence and uniqueness for the problem posed on the line, on the half-line with constant Dirichlet data, and in the radial case in several dimensions. We also describe the asymptotic behaviour of both the solution and its free boundary.
dc.fuente.origenWOS
dc.identifier.doi10.4171/IFB/430
dc.identifier.eissn1463-9971
dc.identifier.issn1463-9963
dc.identifier.urihttps://doi.org/10.4171/IFB/430
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100542
dc.identifier.wosidWOS:000548145300002
dc.issue.numero4
dc.language.isoen
dc.pagina.final462
dc.pagina.inicio441
dc.revistaInterfaces and free boundaries
dc.rightsacceso restringido
dc.subjectNonlocal diffusion
dc.subjectfree boundary problems
dc.subjectpopulation dynamics
dc.subject.ods03 Good Health and Well-being
dc.subject.odspa03 Salud y bienestar
dc.titleA nonlocal diffusion problem with a sharp free boundary
dc.typeartículo
dc.volumen21
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files