Avoiding and Escaping Depressions in Real-Time Heuristic Search
dc.contributor.author | Hernandez, Carlos | |
dc.contributor.author | Baier, Jorge A. | |
dc.date.accessioned | 2024-01-10T13:46:16Z | |
dc.date.available | 2024-01-10T13:46:16Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Heuristics used for solving hard real-time search problems have regions with depressions. Such regions are bounded areas of the search space in which the heuristic function is inaccurate compared to the actual cost to reach a solution. Early real-time search algorithms, like LRTA*, easily become trapped in those regions since the heuristic values of their states may need to be updated multiple times, which results in costly solutions. State-of-the-art real-time search algorithms, like LSS-LRTA* or LRTA* (k), improve LRTA*'s mechanism to update the heuristic, resulting in improved performance. Those algorithms, however, do not guide search towards avoiding depressed regions. This paper presents depression avoidance, a simple real-time search principle to guide search towards avoiding states that have been marked as part of a heuristic depression. We propose two ways in which depression avoidance can be implemented: mark-and-avoid and move-to-border. We implement these strategies on top of LSS-LRTA* and RTAA*, producing 4 new real-time heuristic search algorithms: aLSS-LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*. When the objective is to find a single solution by running the real-time search algorithm once, we show that daLSS-LRTA* and daRTAA* outperform their predecessors sometimes by one order of magnitude. Of the four new algorithms, daRTAA* produces the best solutions given a fixed deadline on the average time allowed per planning episode. We prove all our algorithms have good theoretical properties: in finite search spaces, they find a solution if one exists, and converge to an optimal after a number of trials. | |
dc.description.funder | Fondecyt | |
dc.description.funder | Pontificia Universidad Catolica de Chile | |
dc.format.extent | 48 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1613/jair.3590 | |
dc.identifier.eissn | 1943-5037 | |
dc.identifier.issn | 1076-9757 | |
dc.identifier.uri | https://doi.org/10.1613/jair.3590 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/79142 | |
dc.identifier.wosid | WOS:000303929100001 | |
dc.information.autoruc | Ingeniería;Baier J;S/I;9477 | |
dc.language.iso | en | |
dc.nota.acceso | Sin adjunto | |
dc.pagina.final | 570 | |
dc.pagina.inicio | 523 | |
dc.publisher | AI ACCESS FOUNDATION | |
dc.revista | JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH | |
dc.rights | registro bibliográfico | |
dc.subject.ods | 11 Sustainable Cities and Communities | |
dc.subject.odspa | 11 Ciudades y comunidades sostenibles | |
dc.title | Avoiding and Escaping Depressions in Real-Time Heuristic Search | |
dc.type | artículo | |
dc.volumen | 43 | |
sipa.codpersvinculados | 9477 | |
sipa.index | WOS | |
sipa.index | Scopus | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Avoiding and Escaping Depressions in Real-Time Heuristic Search.pdf
- Size:
- 2.95 KB
- Format:
- Adobe Portable Document Format
- Description: