Floquet operators without singular continuous spectrum
dc.contributor.author | Astaburuaga, M. A. | |
dc.contributor.author | Bourget, O. | |
dc.contributor.author | Cortes, V. H. | |
dc.contributor.author | Fernandez, C. | |
dc.date.accessioned | 2025-01-21T01:05:56Z | |
dc.date.available | 2025-01-21T01:05:56Z | |
dc.date.issued | 2006 | |
dc.description.abstract | Let U be a unitary operator defined on a infinite-dimensional separable complex Hilbert space R. Assume there exists a self-adjoint operator A on R such that | |
dc.description.abstract | U*A U - A >= cI + K | |
dc.description.abstract | for some positive constant c and compact operator K. Then, assuming the commutators U*AU - A and [A, U* A U] admit a bounded extension over H, we prove the spectrum of the operator U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity. We give a localized version of this result and apply it to study the spectrum of the Floquet operator of periodic time-dependent kicked quantum systems. (C) 2006 Elsevier Inc. All rights reserved. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.jfa.2006.03.028 | |
dc.identifier.eissn | 1096-0783 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | https://doi.org/10.1016/j.jfa.2006.03.028 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/96050 | |
dc.identifier.wosid | WOS:000240605000007 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.pagina.final | 517 | |
dc.pagina.inicio | 489 | |
dc.revista | Journal of functional analysis | |
dc.rights | acceso restringido | |
dc.subject | unitary operators | |
dc.subject | spectrum | |
dc.subject | commutator | |
dc.subject | kicked quantum system | |
dc.title | Floquet operators without singular continuous spectrum | |
dc.type | artículo | |
dc.volumen | 238 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |