Floquet operators without singular continuous spectrum

dc.contributor.authorAstaburuaga, M. A.
dc.contributor.authorBourget, O.
dc.contributor.authorCortes, V. H.
dc.contributor.authorFernandez, C.
dc.date.accessioned2025-01-21T01:05:56Z
dc.date.available2025-01-21T01:05:56Z
dc.date.issued2006
dc.description.abstractLet U be a unitary operator defined on a infinite-dimensional separable complex Hilbert space R. Assume there exists a self-adjoint operator A on R such that
dc.description.abstractU*A U - A >= cI + K
dc.description.abstractfor some positive constant c and compact operator K. Then, assuming the commutators U*AU - A and [A, U* A U] admit a bounded extension over H, we prove the spectrum of the operator U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity. We give a localized version of this result and apply it to study the spectrum of the Floquet operator of periodic time-dependent kicked quantum systems. (C) 2006 Elsevier Inc. All rights reserved.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jfa.2006.03.028
dc.identifier.eissn1096-0783
dc.identifier.issn0022-1236
dc.identifier.urihttps://doi.org/10.1016/j.jfa.2006.03.028
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96050
dc.identifier.wosidWOS:000240605000007
dc.issue.numero2
dc.language.isoen
dc.pagina.final517
dc.pagina.inicio489
dc.revistaJournal of functional analysis
dc.rightsacceso restringido
dc.subjectunitary operators
dc.subjectspectrum
dc.subjectcommutator
dc.subjectkicked quantum system
dc.titleFloquet operators without singular continuous spectrum
dc.typeartículo
dc.volumen238
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files