InVAErt networks: A data-driven framework for model synthesis and identifiability analysis
dc.article.number | 116846 | |
dc.catalogador | jwg | |
dc.contributor.author | Tong G.G. | |
dc.contributor.author | Sing Long Collao, Carlos Alberto | |
dc.contributor.author | Schiavazzi D.E. | |
dc.date.accessioned | 2024-05-30T14:11:45Z | |
dc.date.available | 2024-05-30T14:11:45Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Use of generative models and deep learning for physics-based systems is currently dominated by the task of emulation. However, the remarkable flexibility offered by data-driven architectures would suggest to extend this representation to other aspects of system analysis including model inversion and identifiability. We introduce InVAErt (pronounced invert) networks, a comprehensive framework for data-driven analysis and synthesis of parametric physical systems which uses a deterministic encoder and decoder to represent the forward and inverse solution maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder designed to learn a compact latent representation for the lack of bijectivity between inputs and outputs. We formally analyze how changes in the penalty coefficients affect the stationarity condition of the loss function, the phenomenon of posterior collapse, and propose strategies for latent space sampling, since we find that all these aspects significantly affect both training and testing performance. We verify our framework through extensive numerical examples, including simple linear, nonlinear, and periodic maps, dynamical systems, and spatio-temporal PDEs. | |
dc.description.funder | Centro Nacional de Inteligencia Artificial CENIA | |
dc.description.funder | Marco Radeschi | |
dc.description.funder | NSF | |
dc.description.funder | University of Notre Dame | |
dc.description.funder | Fondecyt | |
dc.description.funder | Pontificia Universidad Católica de Chile | |
dc.description.funder | ANID | |
dc.fechaingreso.objetodigital | 2024-09-05 | |
dc.fuente.origen | SCOPUS | |
dc.identifier.doi | 10.1016/j.cma.2024.116846 | |
dc.identifier.issn | 00457825 | |
dc.identifier.scopusid | SCOPUS_ID:85186264509 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/85983 | |
dc.identifier.wosid | WOS:001199956100001 | |
dc.information.autoruc | Instituto de Ingeniería Matemática y Computacional; Sing Long Collao Carlos Alberto; 0000-0002-2533-2509; 126170 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.publisher | Elsevier B.V. | |
dc.revista | Computer Methods in Applied Mechanics and Engineering | |
dc.rights | acceso restringido | |
dc.subject | Data-driven identifiability analysis | |
dc.subject | Deep neural network | |
dc.subject | Direct and inverse problems | |
dc.subject | Model synthesis | |
dc.subject | Variational autoencoders | |
dc.subject.ddc | 000 | |
dc.subject.dewey | Ciencias de la computación | es_ES |
dc.title | InVAErt networks: A data-driven framework for model synthesis and identifiability analysis | |
dc.type | artículo | |
dc.volumen | 423 | |
sipa.codpersvinculados | 126170 | |
sipa.trazabilidad | ORCID;2024-05-27 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- InVAErt networks - A data-driven framework for model synthesis and identifiability analysis.pdf
- Size:
- 2.92 KB
- Format:
- Adobe Portable Document Format
- Description: