The blow-up problem for a semilinear parabolic equation with a potential

dc.contributor.authorCortazar, Carmen
dc.contributor.authorElgueta, Manuel
dc.contributor.authorRossi, Julio D.
dc.date.accessioned2024-01-10T13:43:45Z
dc.date.available2024-01-10T13:43:45Z
dc.date.issued2007
dc.description.abstractLet Omega be a bounded smooth domain in R-N. We consider the problem u(t) = Delta u + V(x)u(P) in Omega x [0, T), with Dirichlet boundary conditions u = 0 on partial derivative Omega x [0, T) and initial datum u (x, 0) = M phi (x) where M >= 0, phi is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where phi(P-1) V attains its maximum. (c) 2007 Elsevier Inc. All rights reserved.
dc.fechaingreso.objetodigital17-04-2024
dc.format.extent10 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jmaa.2007.01.079
dc.identifier.issn0022-247X
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2007.01.079
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/78744
dc.identifier.wosidWOS:000248445800032
dc.information.autorucMatemática;Cortázar C;S/I;99550
dc.information.autorucMatemática;Elgueta M;S/I;99097
dc.issue.numero1
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final427
dc.pagina.inicio418
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.revistaJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
dc.rightsacceso restringido
dc.subjectblow-up
dc.subjectsemilinear parabolic equations
dc.subjectHEAT-EQUATIONS
dc.subjectDIFFUSION
dc.titleThe blow-up problem for a semilinear parabolic equation with a potential
dc.typeartículo
dc.volumen335
sipa.codpersvinculados99550
sipa.codpersvinculados99097
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-04-17. The blow-up problem for a semilinear parabolic equation with a potential.pdf
Size:
2.52 KB
Format:
Adobe Portable Document Format
Description: