Harmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity

dc.contributor.authorBarchiesi, Marco
dc.contributor.authorHenao, Duvan
dc.contributor.authorMora-Corral, Carlos
dc.contributor.authorRodiac, Remy
dc.date.accessioned2025-01-20T20:08:19Z
dc.date.available2025-01-20T20:08:19Z
dc.date.issued2023
dc.description.abstractWe consider the problem of minimizing the neo-Hookean energy in 3D. The difficulty of this problem is that the space of maps without cavitation is not compact, as shown by Conti & De Lellis with a pathological example involving a dipole. In order to rule out this behaviour we consider the relaxation of the neo-Hookean energy in the space of axisymmetric maps without cavitation. We propose a minimization space and a new explicit energy penalizing the creation of dipoles. This new energy, which is a lower bound of the relaxation of the original energy, bears strong similarities with the relaxed energy of Bethuel-Brezis-Helein in the context of harmonic maps into the sphere.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00205-023-01897-2
dc.identifier.eissn1432-0673
dc.identifier.issn0003-9527
dc.identifier.urihttps://doi.org/10.1007/s00205-023-01897-2
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/91891
dc.identifier.wosidWOS:001039253400001
dc.issue.numero4
dc.language.isoen
dc.revistaArchive for rational mechanics and analysis
dc.rightsacceso restringido
dc.titleHarmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity
dc.typeartículo
dc.volumen247
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files