Watkins's conjecture for elliptic curves over function fields

No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In 2002 Watkins conjectured that given an elliptic curve defined over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document}, its Mordell-Weil rank is at most the 2-adic valuation of its modular degree. We consider the analogous problem over function fields of positive characteristic, and we prove it in several cases. More precisely, every modular semi-stable elliptic curve over Fq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q(T)$$\end{document} after extending constant scalars, and every quadratic twist of a modular elliptic curve over Fq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q(T)$$\end{document} by a polynomial with sufficiently many prime factors satisfy the analogue of Watkins's conjecture. Furthermore, for a well-known family of elliptic curves with unbounded rank due to Ulmer, we prove the analogue of Watkins's conjecture.
Description
Keywords
Watkins's conjecture, Elliptic curves over function fields, Modular degree, Rank
Citation