Mountain pass type solutions for quasilinear elliptic equations
dc.contributor.author | Clément, P | |
dc.contributor.author | García-Huidobro, M | |
dc.contributor.author | Manásevich, R | |
dc.contributor.author | Schmitt, K | |
dc.date.accessioned | 2025-01-21T01:31:14Z | |
dc.date.available | 2025-01-21T01:31:14Z | |
dc.date.issued | 2000 | |
dc.description.abstract | We establish the existence of weak solutions in an Orlicz-Sobolev space to the Dirichlet problem | |
dc.description.abstract | (D) {(-div (a(\del u(x)\)del u(x)))(u = 0), (= g(x, u),) (in Omega)(on partial derivative Omega,) | |
dc.description.abstract | where Omega is a bounded domain in R-N, g is an element of C(<(Omega)over bar> x R, R), and the function phi(s) = sa(\s\) is an increasing homeomorphism from R onto R. Under appropriate conditions on phi, g, and the Orlicz-Sobolev conjugate Phi(*) of Phi(s) = integral(0)(s) phi(t) dt, (conditions which reduce to subcriticality and superlinearity conditions in the case the functions are given by powers), we obtain the existence of nontrivial solutions which are of mountain pass type. | |
dc.fuente.origen | WOS | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/97019 | |
dc.identifier.wosid | WOS:000089073200002 | |
dc.issue.numero | 1 | |
dc.language.iso | en | |
dc.pagina.final | 62 | |
dc.pagina.inicio | 33 | |
dc.revista | Calculus of variations and partial differential equations | |
dc.rights | acceso restringido | |
dc.title | Mountain pass type solutions for quasilinear elliptic equations | |
dc.type | artículo | |
dc.volumen | 11 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |