Mountain pass type solutions for quasilinear elliptic equations

dc.contributor.authorClément, P
dc.contributor.authorGarcía-Huidobro, M
dc.contributor.authorManásevich, R
dc.contributor.authorSchmitt, K
dc.date.accessioned2025-01-21T01:31:14Z
dc.date.available2025-01-21T01:31:14Z
dc.date.issued2000
dc.description.abstractWe establish the existence of weak solutions in an Orlicz-Sobolev space to the Dirichlet problem
dc.description.abstract(D) {(-div (a(\del u(x)\)del u(x)))(u = 0), (= g(x, u),) (in Omega)(on partial derivative Omega,)
dc.description.abstractwhere Omega is a bounded domain in R-N, g is an element of C(<(Omega)over bar> x R, R), and the function phi(s) = sa(\s\) is an increasing homeomorphism from R onto R. Under appropriate conditions on phi, g, and the Orlicz-Sobolev conjugate Phi(*) of Phi(s) = integral(0)(s) phi(t) dt, (conditions which reduce to subcriticality and superlinearity conditions in the case the functions are given by powers), we obtain the existence of nontrivial solutions which are of mountain pass type.
dc.fuente.origenWOS
dc.identifier.issn0944-2669
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/97019
dc.identifier.wosidWOS:000089073200002
dc.issue.numero1
dc.language.isoen
dc.pagina.final62
dc.pagina.inicio33
dc.revistaCalculus of variations and partial differential equations
dc.rightsacceso restringido
dc.titleMountain pass type solutions for quasilinear elliptic equations
dc.typeartículo
dc.volumen11
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files