Fractal Spatial Distributions of Initial Shear Stress and Frictional Properties on Faults and Their Impact on Dynamic Earthquake Rupture
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We investigate the influence of the heterogeneous slip-weakening distance ( D-C ) in dynamic rupture simulations, in which D-C is proportional to the fault irregularities. Specifically, we compare a heterogeneous fractal D-C distribution to a uniform D-C over the entire fault when the initial shear stress is also heterogeneous. We find that even small changes in the average value of D-C ( < 1 mm) can lead to significant differences in the rupture evolution; that is, the average D-C and the way D(C )is distributed determines if the rupture is a runaway, self-arrested, or nonpropagating. We find that the self-arrested ruptures differ from runaway ruptures in the amount of area characterized by large slips (asperities). Self-arrested ruptures match the Somerville et al. (1999) asperity criteria in which - 25% of ruptured area radiate - 45% of the total seismic moment. This criterion is not satisfied for runaway ruptures. For runaway ruptures, - 50% of the ruptured area radiates about 70% of the seismic moment, indicating that the ruptured area is not linearly proportional to the seismic moment. Self-arrested ruptures are characterized by dynamic shear stress drops (SDs) in the range - 2.9 -5.5 MPa, whereas for runaway ruptures the dynamic SDs increase to values between -12 and 20 MPa. Self-arrested ruptures generated by fractal distributed D-C resemble the rupture properties of observed earthquakes. In addition, results show that the conditions for self-arrested ruptures are connected to the decrease of residual energy at rupture boundaries.