Surface Ammonia-Oxidizer Abundance During the Late Summer in the West Antarctic Coastal System

dc.contributor.authorAlcaman-Arias, Maria E.
dc.contributor.authorCifuentes-Anticevic, Jeronimo
dc.contributor.authorDiez, Beatriz
dc.contributor.authorTesta, Giovanni
dc.contributor.authorTroncoso, Macarena
dc.contributor.authorBello, Estrella
dc.contributor.authorFarias, Laura
dc.date.accessioned2025-01-20T21:09:22Z
dc.date.available2025-01-20T21:09:22Z
dc.date.issued2022
dc.description.abstractMarine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L-1 day(-1) (2018) and 37.28 nmol N L-1 day(-1) (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L-1 day(-1) were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February-March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-epsilon and NP-gamma clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.
dc.description.funderANID/PFCHA/Doctorado Nacional
dc.fuente.origenWOS
dc.identifier.doi10.3389/fmicb.2022.821902
dc.identifier.eissn1664-302X
dc.identifier.urihttps://doi.org/10.3389/fmicb.2022.821902
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93527
dc.identifier.wosidWOS:000782509500001
dc.language.isoen
dc.revistaFrontiers in microbiology
dc.rightsacceso restringido
dc.subjectnitrification
dc.subjectammonia-oxidizers
dc.subjectWestern Antarctic Peninsula
dc.subjectArchaea
dc.subjectBacteria
dc.subjectphotic layer
dc.subject.ods15 Life on Land
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleSurface Ammonia-Oxidizer Abundance During the Late Summer in the West Antarctic Coastal System
dc.typeartículo
dc.volumen13
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files