One day ahead load forecasting by recurrent neural networks

dc.contributor.authorPrina, J
dc.contributor.authorCipriano, A
dc.contributor.authorCardenoso, V
dc.contributor.authorAlonso, L
dc.contributor.authorOlmedo, JC
dc.contributor.authorRamos, M
dc.date.accessioned2024-01-10T13:15:46Z
dc.date.available2024-01-10T13:15:46Z
dc.date.issued1997
dc.description.abstractIn recent years, many applications of neural network methodologies to power system problems have been reported. Among them, short term load forecasting has been one of the most popular. Multilayer perceptron networks have constituted the preferred architecture, achieving successful results. However this network model generally fails to deal with the temporal characteristics of the load signal, being more suitable for static pattern recognition tasks. Dynamic or recurrent networks have shown better capabilities for time signals modeling and forecasting. This paper presents the application of a recurrent network model, which uses a very limited amount of data, to the load forecasting problem. Particularly, the Elman, recurrent model was applied to the 24 hour ahead load forecasting for the Chilean Central Interconnected System (SIC). The load values are considered as a time series, taking advantage of the temporal processing capabilities of this neural network model.
dc.fechaingreso.objetodigitalNo aplica
dc.format.extent4 páginas
dc.fuente.origenWOS
dc.identifier.issn0969-1170
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/78529
dc.identifier.wosidWOS:A1997YE57300003
dc.information.autorucIngeniería;Cipriano A;S/I;99102
dc.issue.numero3
dc.language.isoen
dc.nota.accesosin adjunto
dc.pagina.final166
dc.pagina.inicio163
dc.publisherC R L PUBLISHING LTD
dc.revistaENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS
dc.rightsregistro bibliográfico
dc.subjectload forecasting
dc.subjectrecurrent neural networks
dc.subjectSYSTEMS
dc.subject.ods07 Affordable and Clean Energy
dc.subject.odspa07 Energía asequible y no contaminante
dc.titleOne day ahead load forecasting by recurrent neural networks
dc.typeartículo
dc.volumen5
sipa.codpersvinculados99102
sipa.indexWOS
sipa.trazabilidadCarga SIPA;09-01-2024
Files