Engineering bacterial strains through the chromosomal insertion of the chlorocatechol catabolism <i>tfd</i><sub>I</sub>CDEF gene cluster, to improve degradation of typical bleached Kraft pulp mill effluent pollutants

dc.contributor.authorBobadilla, R
dc.contributor.authorVarela, C
dc.contributor.authorCéspedes, R
dc.contributor.authorGonzález, B
dc.date.accessioned2025-01-21T01:10:39Z
dc.date.available2025-01-21T01:10:39Z
dc.date.issued2002
dc.description.abstractChloroaromatic pollutants from bleached Kraft pulp mill effluents (BKME) are difficult to degrade, because bacterial strains present in BKME aerobic treatments, only partially degrade these compounds, accumulating the corresponding chlorocatechol intermediates. To improve the catabolic performance of chlorocatechol-accumulating strains, we introduced, by chromosomal insertion, the tfd(I)CDEF gene cluster from Ralstonia eutropha JMP134 (pJP4). This gene cluster allows dechlorination and channelling of chlorocatechols into the intermediate metabolism. Two bacterial strains, R. eutropha JMP222 and Pseudomonas putida KT2442, able to produce chlorocatechols from 3-chlorobenzoate (3-CB) were used. Acinetobacter lwoffii RB2 isolated from BKME by its ability to grow on guaiacol as sole carbon source and shown to be able to produce the corresponding chlorocatechols from the BKME pollutants 4-, and 5-chloroguaiacol, was also used. The tfd(I)CDEF gene cluster was inserted in the chromosome of these strains using mini Tn5-derived vectors that allow expression of the Tfd enzymes driven by the lacI(q)/P-trc or tfdR/Ptfd-I regulatory systems, and therefore, responding to the inducers isopropyl-beta-D-thiogalactopyranoside (IPTG) or 3-CB, respectively. Crude extracts of cells from strains JMP222, KT2442 or RB2 engineered with the tfd genes, grown on benzoate and induced with IPTG or 3-CB showed Tfd specific activities of about 15% - 80% of that of the strain JMP134. Dechlorination rates for 3-CB or chloroguaiacols correlated with levels of Tfd enzymes. However, none of the strains containing the chromosomal copy of the tfd(I)CDEF cluster grew on monochloroaromatics as sole carbon source. Experiments with BKME aerobic treatment microcosms showed that the catabolic performance of the engineered bacteria was also lower than the wildtype R. eutropha strain JMP134.
dc.fuente.origenWOS
dc.identifier.issn0717-3458
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96706
dc.identifier.wosidWOS:000180213300008
dc.issue.numero2
dc.language.isoen
dc.pagina.final172
dc.pagina.inicio162
dc.revistaElectronic journal of biotechnology
dc.rightsacceso restringido
dc.subjectchloroaromatics
dc.subjectchlorocatechols
dc.subjectmetabolic complementation
dc.subjectRalstonia eutropha
dc.subjectortho ring cleavage
dc.subjecttfd genes
dc.titleEngineering bacterial strains through the chromosomal insertion of the chlorocatechol catabolism <i>tfd</i><sub>I</sub>CDEF gene cluster, to improve degradation of typical bleached Kraft pulp mill effluent pollutants
dc.typeartículo
dc.volumen5
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files