Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test
dc.contributor.author | Eyheramendy, Susana | |
dc.contributor.author | Saa, Pedro A. | |
dc.contributor.author | Undurraga, Eduardo A. | |
dc.contributor.author | Valencia, Carlos | |
dc.contributor.author | Lopez, Carolina | |
dc.contributor.author | Mendez, Luis | |
dc.contributor.author | Pizarro Berdichevsky, Javier | |
dc.contributor.author | Finkelstein Kulka, Andres | |
dc.contributor.author | Solari, Sandra | |
dc.contributor.author | Salas, Nicolas | |
dc.contributor.author | Bahamondes, Pedro | |
dc.contributor.author | Ugarte, Martin | |
dc.contributor.author | Barcelo, Pablo | |
dc.contributor.author | Arenas, Marcelo | |
dc.contributor.author | Agosin, Eduardo | |
dc.date.accessioned | 2024-01-10T12:37:00Z | |
dc.date.available | 2024-01-10T12:37:00Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75-0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63-0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening. | |
dc.description.funder | Technological Adoption Fund SiEmpre from SOFOFA Hub (CORFO) | |
dc.description.funder | ANID through the Millennium Science Initiative Program | |
dc.description.funder | ANID Millennium Science Initiative Program | |
dc.description.funder | ANID FONDECYT | |
dc.description.funder | ANID FONDECYT de Iniciacion | |
dc.fechaingreso.objetodigital | 26-03-2024 | |
dc.format.extent | 17 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.isci.2021.103419 | |
dc.identifier.eissn | 2589-0042 | |
dc.identifier.pubmedid | MEDLINE:34786538 | |
dc.identifier.uri | https://doi.org/10.1016/j.isci.2021.103419 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/76718 | |
dc.identifier.wosid | WOS:000740250200009 | |
dc.information.autoruc | Facultad de Ingeniería; Arenas Saavedra, Marcelo Alejandro; S/I; 81488 | |
dc.information.autoruc | Interdisciplinarias; Undurraga Fourcade, Eduardo Andres; S/I; 12868 | |
dc.issue.numero | 12 | |
dc.language.iso | en | |
dc.nota.acceso | contenido completo | |
dc.publisher | CELL PRESS | |
dc.revista | ISCIENCE | |
dc.rights | acceso abierto | |
dc.subject | TRANSMISSION | |
dc.subject | DYSFUNCTION | |
dc.subject.ods | 03 Good Health and Well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test | |
dc.type | artículo | |
dc.volumen | 24 | |
sipa.codpersvinculados | 81488 | |
sipa.codpersvinculados | 12868 | |
sipa.index | WOS | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2024-03-26. Screening of COVID-19 cases through a Bayesian.pdf
- Size:
- 1.96 MB
- Format:
- Adobe Portable Document Format
- Description: