Finite Control Set Model Predictive Current Control (FCS-MPCC) of Three-Port Converter for Fuel Cell Hybrid Electric Vehicles

dc.catalogadorvzp
dc.contributor.authorLizana Gajardo, Alonso Javier
dc.contributor.authorPereda Torres, Javier
dc.contributor.authorRubio, Felipe
dc.contributor.authorRojas Lobos, Felix Eduardo
dc.date.accessioned2025-03-07T15:41:29Z
dc.date.available2025-03-07T15:41:29Z
dc.date.issued2025
dc.description.abstractFuel cell hybrid electric vehicles (FCEVs) are considered an appealing option for heavy-duty and long-distance vehicles. However, they require the use of multiple power converters to manage power distribution among the fuel cell, battery or ultracapacitor, and AC motor, leading to increased power losses and a more complex system. To overcome this challenge, multi-port power converters have been proposed to combine two power sources and the AC motor into one conversion stage, boosting overall efficiency and power density in hybrid powertrains. However, these converters still rely on a high number of semiconductors and involve complex control systems. This paper introduces a three-port converter (TPC) for FCHEVs, using only one power stage with 6 semiconductors, achieving high performance control of an ac motor, a fuel cell and a battery. A multivariable optimal control (Finite-Control-Set Model Predictive Current Control) manages the power flows between the energy sources and drives the motor simultaneously. Additionally, the performance of the multiport converter is improved by replacing its three inductors with a custom coupled inductor designed to reduce circulating AC currents. This innovation contributes to improved efficiency and overall functionality of the FCHEV system. The proposed system was validated through an 0.5kW experimental test bench and simulations of an urban driving cycle. The system controlled the multiple variables of the hybrid system with proper operation and fast dynamics, meanwhile the coupled inductor decreases the current magnitude in 20% compared to the non-coupled configuration.
dc.description.funderANID (National Agency for Research and Development, Chile)
dc.format.extent9 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1109/TVT.2024.3476924
dc.identifier.eissn1939-9359
dc.identifier.issn0018-9545
dc.identifier.urihttps://doi.org/10.1109/TVT.2024.3476924
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102440
dc.identifier.wosidWOS:001425471500007
dc.information.autorucEscuela de Ingeniería; Lizana Gajardo, Alonso Javier; S/I; 245428
dc.information.autorucEscuela de Ingeniería; Pereda Torres, Javier; 0000-0002-3407-5233; 131481
dc.information.autorucEscuela de Ingeniería; Rojas Lobos, Felix Eduardo; 0000-0001-6145-2826; 1213491
dc.issue.numero2
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final2714
dc.pagina.inicio2706
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.revistaIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
dc.rightsacceso restringido
dc.subjectInductors
dc.subjectBatteries
dc.subjectFuel cells
dc.subjectInverters
dc.subjectAC motors
dc.subjectDC-DC power converters
dc.subjectInductance
dc.subjectVehicle dynamics
dc.subjectPredictive models
dc.subjectHybrid power systems
dc.subjectFuel cell electric vehicles
dc.subjectHybrid energy storage systems
dc.subjectModel predictive control
dc.subjectMulti-port power converters
dc.subjectThree-port converter (TPC)
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.subject.ods07 Affordable and clean energy
dc.subject.odspa07 Energía asequible y no contaminante
dc.titleFinite Control Set Model Predictive Current Control (FCS-MPCC) of Three-Port Converter for Fuel Cell Hybrid Electric Vehicles
dc.typeartículo
dc.volumen74
sipa.codpersvinculados245428
sipa.codpersvinculados131481
sipa.codpersvinculados1213491
sipa.trazabilidadWOS;2025-03-01
Files