Remote sensing based mapping of Tillandsia fields-A semi-automatic detection approach in the hyperarid coastal Atacama Desert, northern Chile
dc.article.number | 104821 | |
dc.catalogador | jlo | |
dc.contributor.author | Mikulane, Signe | |
dc.contributor.author | Siegmund, Alexander | |
dc.contributor.author | Del Rio López, Camilo | |
dc.contributor.author | Koch, Marcus A. | |
dc.contributor.author | Osses Mc Intyre, Pablo Eugenio | |
dc.contributor.author | García Barriga, Juan Luis | |
dc.date.accessioned | 2024-08-19T20:14:38Z | |
dc.date.available | 2024-08-19T20:14:38Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Unique fog ecosystems that occur inland along the Chilean coastal desert are dominated by Tillandsia landbeckii. The average annual precipitation in this hyperarid area lies below 1 mm per year. Tillandsia are specialized in the foliar uptake of fog as a main source of water. The detailed mapping of the distribution of Tillandsia is lacking, making it difficult to understand their geo-ecological niche and to determine the impacts that climate change may have on this species. The objective of this study is to create a detailed spatial distribution of Tillandsia in the Atacama Desert in northern Chile based on remote sensing semi-automatic detection process. For this purpose, high-resolution WorldView-3 optical satellite data has been acquired. The extraction of Tillandsia was done with ENVI Deep Learning tools. As a result, a map of Tillandsia has been created. Several fields were found between Cerro Huantajaya in the north and Cerro Soronal in the south in the study area between 800 and 1300 m a.s.l. For validation purposes ground truth data has been used. The overall accuracy of this classification is 92.02%. The results can be used as a basis for geo-ecological niche modeling, further monitoring and for the development of conservation strategies. | |
dc.format.extent | 11 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.jaridenv.2022.104821 | |
dc.identifier.eissn | 1095-922X | |
dc.identifier.issn | 0140-1963 | |
dc.identifier.uri | http://doi.org/10.1016/j.jaridenv.2022.104821 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/87511 | |
dc.identifier.wosid | WOS:000826307600001 | |
dc.information.autoruc | Instituto de Geografía; Del Rio López, Camilo; 0000-0002-6817-431X; 17960 | |
dc.information.autoruc | Instituto de Geografía; Osses Mc Intyre, Pablo Eugenio; 0000-0001-8102-7296; 91302 | |
dc.information.autoruc | Instituto de Geografía; García Barriga, Juan Luis; 0000-0002-9028-7572; 9823 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 11 | |
dc.pagina.inicio | 1 | |
dc.revista | Journal of Arid Environments | |
dc.rights | acceso restringido | |
dc.subject | Atacama desert | |
dc.subject | Deep learning tools | |
dc.subject | Fog ecosystem | |
dc.subject | Remote sensing | |
dc.subject | Tillandsia detection | |
dc.subject | Tillandsia landbeckii | |
dc.subject.ddc | 550 | |
dc.subject.dewey | Ciencias de la tierra | es_ES |
dc.title | Remote sensing based mapping of Tillandsia fields-A semi-automatic detection approach in the hyperarid coastal Atacama Desert, northern Chile | |
dc.type | artículo | |
dc.volumen | 205 | |
sipa.codpersvinculados | 17960 | |
sipa.codpersvinculados | 91302 | |
sipa.codpersvinculados | 9823 | |
sipa.trazabilidad | WOS;2022-10-11 |