Recognizing states of psychological vulnerability to suicidal behavior: a Bayesian network of artificial intelligence applied to a clinical sample
Loading...
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract
Background
This study aimed to determine conditional dependence relationships of variables that contribute to psychological vulnerability associated with suicide risk. A Bayesian network (BN) was developed and applied to establish conditional dependence relationships among variables for each individual subject studied. These conditional dependencies represented the different states that patients could experience in relation to suicidal behavior (SB). The clinical sample included 650 mental health patients with mood and anxiety symptomatology.
Results
Mainly indicated that variables within the Bayesian network are part of each patient’s state of psychological vulnerability and have the potential to impact such states and that these variables coexist and are relatively stable over time. These results have enabled us to offer a tool to detect states of psychological vulnerability associated with suicide risk.
Conclusion
If we accept that suicidal behaviors (vulnerability, ideation, and suicidal attempts) exist in constant change and are unstable, we can investigate what individuals experience at specific moments to become better able to intervene in a timely manner to prevent such behaviors. Future testing of the tool developed in this study is needed, not only in specialized mental health environments but also in other environments with high rates of mental illness, such as primary healthcare facilities and educational institutions.
Description
Keywords
Suicide, Mood disorders, Artificial intelligence, Bayesian models
Citation
BMC Psychiatry. 2020 Mar 30;20(1):138