Shimura curves and the abc conjecture
dc.contributor.author | Pasten, Hector | |
dc.date.accessioned | 2025-01-20T17:11:43Z | |
dc.date.available | 2025-01-20T17:11:43Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this work we develop a framework that enables the use of Shimura curve parametrizations of elliptic curves to approach the abc conjecture, leading to a number of new unconditional applications over Q and, more generally, totally real number fields. Several results of independent interest are obtained along the way, such as bounds for the Manin constant, a study of the congruence number, extensions of the Ribet-Takahashi formula, and lower bounds for the L2-norm of integral quaternionic modular forms.The methods require a number of tools from Arakelov geometry, analytic number theory, Galois representations, complex-analytic estimates on Shimura curves, automorphic forms, known cases of the Colmez conjecture, and results on generalized Fermat equations.& COPY; 2023 Published by Elsevier Inc. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.jnt.2023.07.002 | |
dc.identifier.eissn | 1096-1658 | |
dc.identifier.issn | 0022-314X | |
dc.identifier.uri | https://doi.org/10.1016/j.jnt.2023.07.002 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/91203 | |
dc.identifier.wosid | WOS:001073082200001 | |
dc.language.iso | en | |
dc.pagina.final | 335 | |
dc.pagina.inicio | 214 | |
dc.revista | Journal of number theory | |
dc.rights | acceso restringido | |
dc.subject | Shimura curves | |
dc.subject | Elliptic curves | |
dc.subject | abc conjecture | |
dc.title | Shimura curves and the abc conjecture | |
dc.type | artículo | |
dc.volumen | 254 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |