Full predictivistic modeling of stock market data: Application to change point problems
dc.contributor.author | Loschi, R. H. | |
dc.contributor.author | Iglesias, P. L. | |
dc.contributor.author | Arellano Valle, R. B. | |
dc.contributor.author | Cruz, F. R. B. | |
dc.date.accessioned | 2024-01-10T13:48:38Z | |
dc.date.available | 2024-01-10T13:48:38Z | |
dc.date.issued | 2007 | |
dc.description.abstract | In change point problems in general we should answer three questions: how many changes are there? Where are they? And, what is the distribution of the data within the blocks? In this paper, we develop a new full predictivistic approach for modeling observations within the same block of observation and consider the product partition model (PPM) for treating the change point problem. The PPM brings more flexibility into the change point problem because it considers the number of changes and the instants when the changes occurred as random variables. A full predictivistic characterization of the model can provide a more tractable way to elicit the prior distribution of the parameters of interest, once prior opinions will be required only about observable quantities. We also present an application to the problem of identifying multiple change points in the mean and variance of a stock market return time series. (c) 2006 Elsevier B.V. All rights reserved. | |
dc.fechaingreso.objetodigital | 2024-04-16 | |
dc.format.extent | 10 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.ejor.2006.04.016 | |
dc.identifier.issn | 0377-2217 | |
dc.identifier.uri | https://doi.org/10.1016/j.ejor.2006.04.016 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/79384 | |
dc.identifier.wosid | WOS:000244380500018 | |
dc.information.autoruc | Matemática;Arellano-Valle R;S/I;58107 | |
dc.information.autoruc | Matemática;Iglesias P;S/I;100265 | |
dc.issue.numero | 1 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 291 | |
dc.pagina.inicio | 282 | |
dc.publisher | ELSEVIER SCIENCE BV | |
dc.revista | EUROPEAN JOURNAL OF OPERATIONAL RESEARCH | |
dc.rights | acceso restringido | |
dc.subject | uncertainty modeling | |
dc.subject | normal-inverse-gamma distribution | |
dc.subject | product partition model | |
dc.subject | student-t distribution | |
dc.subject | PRODUCT PARTITION MODELS | |
dc.subject.ods | 03 Good Health and Well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | Full predictivistic modeling of stock market data: Application to change point problems | |
dc.type | artículo | |
dc.volumen | 180 | |
sipa.codpersvinculados | 58107 | |
sipa.codpersvinculados | 100265 | |
sipa.index | WOS | |
sipa.index | Scopus | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Full predictivistic modeling of stock market data Application to change point problems.pdf
- Size:
- 2.55 KB
- Format:
- Adobe Portable Document Format
- Description: