Assessing the performance of novel molten salt mixtures on CSP applications

dc.article.number122689
dc.catalogadorgjm
dc.contributor.authorStarke, Allan R.
dc.contributor.authorCardemil Iglesias, José Miguel
dc.contributor.authorBonini, Vinicius R.B.
dc.contributor.authorEscobar Moragas, Rodrigo
dc.contributor.authorCastro Quijada, Matías Daniel
dc.contributor.authorVidela Leiva, Álvaro Rodrigo
dc.date.accessioned2024-03-13T20:14:22Z
dc.date.available2024-03-13T20:14:22Z
dc.date.issued2024
dc.description.abstractThe use of molten salt mixtures as a storage medium in Concentrating Solar Power (CSP) plants has been shown to have a significant impact on increasing the reliability of CSP plants and reducing the levelized cost of energy. In this context, the present work presents the implementation of a detailed simulation procedure that contemplates different design considerations for the Rankine cycle to maximize its efficiency according to the temperature constraints established by utilizing different molten salt mixtures. To achieve this, three commercial CSP plant configurations were considered: an indirect coupling using parabolic trough collectors (PTC) with thermal oil as field heat transfer fluid (HTF) and molten salts as the storage medium, a direct coupling of PTC using molten salt as HTF and storage medium, and a central receiver plant (solar tower). The analysis considers the integration strategy between the solar system and the thermal storage, where all of those configurations considered the integration of the two-tank (hot/cold) approach. The analysis enables the development of an accurate estimation of the economic performance of changing the HTF in CSP plants, as well as the assessment of the parasitic consumption due to freezing protection systems, the effect of increasing the current field temperature, and the effect on the plant’s capacity factor. The results show that the improvement in conversion efficiencies associated with salt mixtures operating at higher temperatures induces a higher electricity generation; however, such improvement is not compensated by the material change costs within the specified considerations.
dc.fechaingreso.objetodigital2024-08-30
dc.format.extent23 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.apenergy.2024.122689
dc.identifier.urihttps://doi.org/10.1016/j.apenergy.2024.122689
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/84380
dc.information.autorucEscuela de Ingeniería; Cardemil Iglesias, Jose Miguel; 0000-0002-9022-8150; 119912
dc.information.autorucEscuela de Ingeniería; Escobar Moragas, Rodrigo; S/I; 158663
dc.information.autorucEscuela de Ingeniería; Castro Quijada, Matías Daniel; S/I; 148238
dc.information.autorucEscuela de Ingeniería; Videla Leiva, Álvaro Rodrigo; 0000-0002-6785-5818; 10225
dc.language.isoen
dc.nota.accesoContenido parcial
dc.revistaApplied Energy
dc.rightsacceso restringido
dc.subjectCSP
dc.subjectMolten salts
dc.subjectLithium nitrate salts
dc.subjectTRNSYS simulation
dc.subjectOptimization
dc.subject.ods07 Affordable and clean energy
dc.subject.odspa07 Energía asequible y no contaminante
dc.titleAssessing the performance of novel molten salt mixtures on CSP applications
dc.typeartículo
dc.volumen359
sipa.codpersvinculados119912
sipa.codpersvinculados158663
sipa.codpersvinculados148238
sipa.codpersvinculados10225
sipa.trazabilidadORCID;2024-02-05
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Assessing the performance of novel molten salt mixtures on CSP applications.pdf
Size:
31.64 KB
Format:
Adobe Portable Document Format
Description: