Observational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology

dc.contributor.authorHernandez-Almada, A.
dc.contributor.authorLeon, Genly
dc.contributor.authorMagana, Juan
dc.contributor.authorGarcia-Aspeitia, Miguel A.
dc.contributor.authorMotta, V
dc.contributor.authorSaridakis, Emmanuel N.
dc.contributor.authorYesmakhanova, Kuralay
dc.contributor.authorMillano, Alfredo D.
dc.date.accessioned2025-01-20T21:08:43Z
dc.date.available2025-01-20T21:08:43Z
dc.date.issued2022
dc.description.abstractWe study the scenario of Kaniadakis horizon-entropy cosmology, which arises from the application of the gravity-thermodynamics conjecture using the Kaniadakis modified entropy. The resulting modified Friedmann equations contain extra terms that constitute an effective dark energy sector. We use data from cosmic chronometers, Type Ia supernova, H II galaxies, strong lensing systems, and baryon acoustic oscillation observations, and we apply a Bayesian Markov chain Monte Carlo analysis to construct the likelihood contours for the model parameters. We find that the Kaniadakis parameter is constrained around 0, namely around the value where the standard Bekenstein-Hawking is recovered. Concerning the normalized Hubble parameter, we find h = 0.708(-0.011)(+0.012), a result that is independently verified by applying the H0(z) diagnostic and, thus, we conclude that the scenario at hand can alleviate the H-0 tension problem. Regarding the transition redshift, the reconstruction of the cosmographic parameters gives z(T) = 0.715(-0.041)(+0.042). Furthermore, we apply the Akaike, Bayesian, and deviance information criteria, and we find that in most data sets the scenario is statistical equivalent to Lambda cold dark matter one. Moreover, we examine the big bang nucleosynthesis, and we show that the scenario satisfies the corresponding requirements. Additionally, we perform a phase-space analysis, and we show that the Universe past attractor is the matter-dominated epoch, while at late times the Universe results in the dark-energy-dominated solution. Finally, we show that Kaniadakis horizon-entropy cosmology accepts heteroclinic sequences, but it cannot exhibit bounce and turnaround solutions.
dc.fuente.origenWOS
dc.identifier.doi10.1093/mnras/stac795
dc.identifier.eissn1365-2966
dc.identifier.issn0035-8711
dc.identifier.urihttps://doi.org/10.1093/mnras/stac795
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93489
dc.identifier.wosidWOS:000782486100014
dc.issue.numero4
dc.language.isoen
dc.pagina.final5134
dc.pagina.inicio5122
dc.revistaMonthly notices of the royal astronomical society
dc.rightsacceso restringido
dc.subjectcosmological parameters
dc.subjectdark energy
dc.titleObservational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology
dc.typeartículo
dc.volumen512
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files