QUBIC II: Spectral polarimetry with bolometric interferometry

Abstract
Bolometric interferometry is a novel technique that has the ability to perform spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and can reconstruct sky maps in several sub-bands within the physical band in post-processing of the data. This provides a powerful spectral method to discriminate between the cosmic mi-crowave background (CMB) and astrophysical foregrounds. In this paper, the methodology is illustrated with examples based on the Q & U Bolometric Interferometer for Cosmology (QUBIC) which is a ground-based instrument designed to measure the B-mo de polarization of the sky at millimeter wavelengths. We consider the specific cases of point source reconstruc-tion and Galactic dust mapping and we characterize the point spread function as a function of frequency. We study the noise properties of spectral imaging, especially the correlations between sub-bands, using end-to-end simulations together with a fast noise simulator. We conclude showing that spectral imaging performance are nearly optimal up to five sub-bands in the case of QUBIC.
Description
Keywords
CMBR experiments, CMBR theory, cosmological parameters from CMBR, grav-itational waves and CMBR polarization
Citation